Synthesis, Structure and Selective Upper Rim Functionalization of Long Chained Alkoxythiacalix[4]arenes

OLEG KASYAN ${ }^{1}$, ELISABETH R. HEALEY ${ }^{2}$, ANDRIY DRAPAILO ${ }^{1}$, MIKE ZAWOROTKO ${ }^{2}$, SEBASTIEN CECILLON ${ }^{3}$, ANTHONY W. COLEMAN ${ }^{3}$ and VITALY KALCHENKO ${ }^{1, *}$
${ }^{1}$ Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv-94, Murmanska str. 5, Kyiv, Ukraine; ${ }^{2}$ Department of Chemistry, The University of South Florida, 4202 E. Fowler Avenue, SCA 400, Tampa, Florida, 33620, USA; ${ }^{3}$ IBCP, CNRS UMR 5086, 7 passage du Vercors, Lyon, F69367, France

(Received: 13 June 2006; in final form: 13 July 2006)

Key words: amphiphilic calixarene, Langmuir-Blodgett film, thiacalixarene, X-ray analysis

Abstract

The synthesis and X-ray structure investigation of the cone shaped monodecyloxythiacalix[4]arene, as well as the introduction of the reactive bromide or chloromethyl groups on it's upper rim are described. Preparation of the amphiphilic derivative of thiacalixarene bearing three hydrophilic diethoxyphosphoryl groups at the upper rim and lipophilic decyloxy group at the lower rim is presented.

Introduction

Thiacalix[4]arenes, as the new members of the wellknown calix[4]arene family [1], have been intensively studied during the last decade [2-6]. The presence of four bridging sulfur atoms in the thiacalix[4]arene macrocyclic skeleton, instead of four methylene groups in the classical calix[4]arenes, increases the size of the molecular cavity and enables supplementary modification of the macrocyclic skeleton by the oxidation of the sulfur atoms $[4,7-9]$.

Calixarenes possessing long chain alkyl groups are promising platforms in the design of self-assembled systems such as: Langmuir or Langmuir-Blodgett films; nanoparticles; biomembrane modifiers etc. [1].

Some examples of the lower rim total or partial alkylation of thiacalix[4]arenes $\mathbf{1 a}, \mathbf{b}$ with methyl-, ethyl-, propyl- or butyl haloids are described in the literature [6, 10-13]. However, there is no example of the thiacalixarene lower rim functionalization with the long chain alkyl substituents.

In this article we describe the syntheses and structural examinations of the long chain ($\mathrm{C}_{10}, \mathrm{C}_{12}$) Osubstituted thiacalix[4]arenes which can be used as the suitable platforms for the design of self-assembled systems. Regioselective functionalization of the cone shaped monodecyloxythiacalix[4]arene upper rim with three bromide, chloromethyl or diethoxyphosphoryl groups is presented.

[^0]
Experimental

Synthesis of 2a, 2b and 2c

Decylbromide ($8.91 \mathrm{~g}, 40.32 \mathrm{mmol}, 8.40 \mathrm{ml}$) was added to a suspension of $\mathbf{1 a}(1.00 \mathrm{~g}, 2.02 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(5.57 \mathrm{~g}, 40.40 \mathrm{mmol})$ in dry acetone (40 ml). The reaction mixture was refluxed at stirring for 40 h . About 1 N HCl was added to the mixture ($\mathrm{pH}<7$). Water layer was washed with chloroform ($3 \times 30 \mathrm{ml}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Isopropyl alcohol (10 ml) was added and the crystalline residue was filtered, washed with isopropyl alcohol $(2 \times 5 \mathrm{ml})$ and dried for 2 h under vacuum $(0.01 \mathrm{mmHg})$ at $50^{\circ} \mathrm{C}$. Compound $\mathbf{2 a}(0.53 \mathrm{~g}, 25 \%)$ was obtained as a colorless crystalline product. Mp $75-80{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.91\left(\mathrm{t}, 12 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.08\left(\mathrm{~m}, ~ 16 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 1.14-1.38(\mathrm{~m}, 48 \mathrm{H}$, $\left.\left(\mathrm{CH}_{2}\right)_{\sigma}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 3.86(\mathrm{t}, 8 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{O}-$ CH_{2}), $6.81(\mathrm{t}, 4 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}$-arom.), 7.34 (d, 8 H , $J=7.7 \mathrm{~Hz}, \mathrm{H}$-arom.) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 14.13 (s, CH_{3}), 22.73 (s, $\mathrm{CH}_{2}-\mathrm{CH}_{3}$), 25.75 ($\mathrm{s}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-$ $\left.\mathrm{CH}_{3}\right), 28.94\left(\mathrm{~s}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 29.50\left(\mathrm{~s}, \mathrm{CH}_{2}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{3}\right), 29.75\left(\mathrm{~s},\left(\mathrm{CH}_{2}\right)_{3}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3}\right), 32.01(\mathrm{~s}$, $\left.\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{3}\right), 69.14\left(\mathrm{~s}, \mathrm{O}-\mathrm{CH}_{2}\right), 122.67$ (s, Carom.), 128.86 (s, C-arom.), 131.59 (s, C-arom.), 159.84 (s, C-arom.). Anal. calcd for $\mathrm{C}_{64} \mathrm{H}_{96} \mathrm{O}_{4} \mathrm{~S}_{4}, \%$: C, 72.68; H, 9.15; S, 12.13. Found, \%: C, 72.61; H, 8.88; S, 11.85 .

In the same conditions, compound 2b (68%) was obtained as a colorless crystalline product. Mp 165$170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.90(\mathrm{t}, 12 \mathrm{H}$,
$\left.J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.99\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.00-1.40$ $\left(\mathrm{m}, 92 \mathrm{H},\left(\mathrm{CH}_{2}\right), \mathrm{CH}_{2}-\mathrm{CH}_{3}\right.$ and $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.82(\mathrm{t}, 8 \mathrm{H}$, $\left.J=6.6 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}\right), 7.31(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}-$ arom. $) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.07\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 22.69\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ $\left.\mathrm{CH}_{3}\right), 25.88\left(\mathrm{~s}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 29.00\left(\mathrm{~s}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\right.$ $\left.\mathrm{CH}_{3}\right), 29.30\left(\mathrm{~s}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{3}\right), 29.63\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3}\right), \quad 29.75$ (s, $\left.\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{CH}_{3}\right), \quad 29.97$ (s, $\left.\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{3}\right), 31.38\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.93$ (s, $\left.\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{3}\right), 34.19\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 68.87(\mathrm{~s}, \mathrm{O}-$ CH_{2}), 127.65 (s, C-arom.), 128.10 (s, C-arom.), 145.28 (s, C-arom.), 157.22 (s, C-arom.). Anal. calcd for $\mathrm{C}_{80} \mathrm{H}_{128} \mathrm{O}_{4} \mathrm{~S}_{4}, \%$: C, 74.94; H, 10.06; S, 10.00. Found, \%: C, 74.90; H, 10.12; S, 10.08.

In the same conditions, compound 2c (70\%) was obtained as a colorless crystalline product. Mp 160$162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.89(\mathrm{t}, 12 \mathrm{H}$, $\left.J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.94-1.40\left(\mathrm{~m}, 116 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{10}-\mathrm{CH}_{3}\right.$ and $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.81\left(\mathrm{t}, 8 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}\right), 7.30$ (s, $8 \mathrm{H}, \mathrm{H}$-arom.). Anal. calcd for $\mathrm{C}_{88} \mathrm{H}_{144} \mathrm{O}_{4} \mathrm{~S}_{4}, \%$: C, 75.80; H, 10.41; S, 9.20. Found, \%: C, 75.64; H, 10.37; S, 9.08.

X-ray crystallography data of $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{3}$

Intensity data for the compounds $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{3}$ were collected at 200 K on a Bruker SMART-APEX diffractometer using $\mathrm{Mo}_{\kappa \alpha}$ radiation $(\lambda=0.7107 \AA)$. Lorentz and polarization corrections were applied and diffracted data were also corrected for absorption using the SADABS program. The structures were solved by the direct methods and Fourier techniques. Structure solution and refinement were based on $|F|^{2}$. All nonhydrogen atoms were refined with anisotropic displacement parameters. The H atoms of the $\mathrm{C}-\mathrm{H}$ groups were fixed in the calculated positions. The hydrogen atoms of the hydroxyl groups in three were located via difference Fourier map inspection and refined with riding coordinates and isotropic thermal parameters based upon the corresponding O atoms $[U(\mathrm{H})=1.2 U \mathrm{eq}(\mathrm{O})]$. All crystallographic calculations were conducted with the SHELXTL 6.10 program package. The crystallographic data for the crystal structures has been deposited at the Cambridge Crystallographic Data Center and allocated the deposition numbers.

Crystal data for 2a

Empirical formula $\mathrm{C}_{64} \mathrm{H}_{96} \mathrm{O}_{4} \mathrm{~S}_{4}, \mathrm{M}=1057.65 \mathrm{~g} \mathrm{~mol}^{-1}$, triclinic, space group $\quad P-1, \quad a=13.724(2)$, $b=14.226(2), \quad c=19.299(2) \AA, \quad \alpha=106.712(3)$, $\beta=93.563(2), \gamma=118.832(2) \mathrm{deg}, U=3071.7(6) \AA^{3}$, $Z=2, \quad d_{\text {calc }}=1.144 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu=0.199 \mathrm{~mm}^{-1}$, $F(000)=1152, \quad 2 \theta_{\max }=48.32^{\circ} \quad(-15 \leq h \leq 15$, $-16 \leq k \leq 16, \quad-21 \leq l \leq 22$). Final residuals (for 653 parameters) were: $R 1=0.0773, w R 2=0.1509$ for 5091 reflections with $I>2 \sigma(I)$ and $R 1=0.1511$, $w R 2=0.1836, \quad$ GooF $=1.007$ for all 9572 data $\left(R_{\text {int }}=0.0679\right)$. Residual electron density was 0.293 and $-0.304 \mathrm{e}^{-3}$. CCDC 610205.

Crystal data for 2b

Empirical formula $\mathrm{C}_{80} \mathrm{H}_{128} \mathrm{O}_{4} \mathrm{~S}_{4}, \mathrm{M}=1282.06 \mathrm{~g} \mathrm{~mol}^{-1}$, monoclinic, space group $P 2(1) / \mathrm{n}, \quad a=10.542(1)$, $b=41.885(3), c=18.743(2) \AA, \beta=104.638(2) \mathrm{deg}$, $U=8007.7(10) \AA^{3}, \quad Z=4, \quad d_{\text {calc }}=1.063 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu=0.163 \mathrm{~mm}^{-1}, \quad F(000)=2816, \quad 2 \theta_{\max }=50.14^{\circ}$ $(-12 \leq h \leq 12,-49 \leq k \leq 38,-21 \leq l \leq 22)$. Final residuals (for 809 parameters) were $R 1=0.0896, w R 2=0.2030$ for 6794 reflections with $I>2 \sigma(I)$ and $R 1=0.1821$, $w R 2=0.2491$, GooF $=1.022$ for all 14166 data $\left(R_{\mathrm{int}}=0.0913\right)$. Residual electron density was 0.404 and $-0.327 \mathrm{e}^{\AA^{-3}}$. CCDC 610206.

Crystal data for 3

Empirical formula $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~S}_{4}, \mathrm{M}=636.87 \mathrm{~g} \mathrm{~mol}^{-1}$, monoclinic, space group $P 2(1) / c, a=12.1997(13)$, $b=13.5203(15), \quad c=19.1770(20) \AA, \quad \beta=94.302(2)$ $\mathrm{deg}, U=3154.3(6) \AA^{3}, Z=4, d_{\text {calc }}=1.341 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu=0.339 \mathrm{~mm}^{-1}, \quad F(000)=1344, \quad 2 \theta_{\max }=50.06^{\circ}$ $(-11 \leq h \leq 14,-14 \leq k \leq 16,-22 \leq l \leq 22)$. Final residuals (for 380 parameters) were $R 1=0.0528, w R 2=0.1178$ for 3767 reflections with $I>2 \sigma(I)$ and $R 1=0.0849$, $w R 2=0.1330, \mathrm{GooF}=1.033$ for all 5565 data $\left(R_{\text {int }}=0.0480\right)$. Residual electron density was 0.421 and -0.340 e \AA^{-3}. CCDC 610207.

Synthesis of $\mathbf{3}$

Decylbromide ($3.56 \mathrm{~g}, 16.13 \mathrm{mmol}, 3.34 \mathrm{ml}$) was added to the suspension of $\mathbf{1 a}(2.00 \mathrm{~g}, 4.03 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.83 \mathrm{~g}, 6.05 \mathrm{mmol})$ in dry acetone $(120 \mathrm{ml})$. The reaction mixture was refluxed for 100 h at stirring. About 1 N HCl was added to the mixture ($\mathrm{pH}<7$). Water layer was washed with chloroform $(3 \times 50 \mathrm{ml})$. The combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Diethyl ether (20 ml) was added and the crystalline residue was filtered, washed with diethyl ether $(3 \times 5 \mathrm{ml})$ and dried for 1 h under vacuum $(0.01 \mathrm{mmHg})$ at $100{ }^{\circ} \mathrm{C}$. Compound $3(1.53 \mathrm{~g}, 60 \%)$ was obtained as a colorless crystalline product. Mp 135-140 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88\left(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.19-1.58\left(\mathrm{~m}, 12 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{3}\right), 1.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{3}\right), 2.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{3}\right), 4.33$ $\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}\right), 6.62(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$, H-arom.), 6.73 (t, 2H, $J=7.6 \mathrm{~Hz}, \mathrm{H}$-arom.), 6.88 (t, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}$-arom.), 7.43 (d, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}$, H-arom.), 7.51 (d, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}$-arom.), 7.62 (d, $4 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}$-arom.), $8.76(\mathrm{~s}, 3 \mathrm{H}, O H) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.13\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 22.71\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ $\left.\mathrm{CH}_{3}\right), 25.73\left(\mathrm{~s}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 29.41\left(\mathrm{~s},\left(\mathrm{CH}_{2}\right)_{2}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 29.62\left(\mathrm{~s},\left(\mathrm{CH}_{2}\right)_{3}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3}\right), 31.94(\mathrm{~s}$, $\left.\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{3}\right), 78.92\left(\mathrm{~s}, \mathrm{O}-\mathrm{CH}_{2}\right), 120.35(\mathrm{~s}, \mathrm{C}-$ arom.), 120.70 (s, C-arom.), 121.18 (s, C-arom.), 121.42 (s, C-arom.), 126.05 (s, C-arom.), 128.77 (s, C-arom.), 137.84 (s, C-arom.), 138.27 (s, C-arom.), 138.51 (s, Carom.), 139.13 (s, C-arom.), 157.92 (s, C-arom.), 158.87 (s, C-arom.), 160.13 (s, C-arom.). Anal. calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~S}_{4}, \%: \mathrm{C}, 64.12 ; \mathrm{H}, 5.70 ; \mathrm{S}, 20.14$. Found, $\%$:

C, 63.79; H, 5.73; S, 19.68. MS (FAB) $m / z 637.0$ ([M $\left.\left.{ }^{+}\right]\right)$; $m / z 660.0\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)$.

Synthesis of $\mathbf{4}$

NBS ($0.84 \mathrm{~g}, 4.72 \mathrm{mmol}$) was added to the suspension of $3(1.00 \mathrm{~g}, 1.57 \mathrm{mmol})$ in dry acetone (75 ml). The reaction mixture was stirred for 4 h at r.t. The crystalline residue was filtered, washed with acetone $(2 \times 5 \mathrm{ml})$ and diethyl ether ($2 \times 5 \mathrm{ml}$) and dried for 1 h under vacuum $(0.01 \mathrm{mmHg})$ at $100{ }^{\circ} \mathrm{C}$. Compound $4(1.23 \mathrm{~g}, 90 \%)$ was obtained as a colorless crystalline product. (The use of methyl ethyl ketone as the solvent resulted in a lower yield, 50%). Mp $190-195{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.88\left(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, C H_{3}\right), 1.20-1.40(\mathrm{~m}$, $\left.10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{CH}_{3}\right), 1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{CH}_{3}\right)$, $1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{3}\right), 2.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{3}\right), 4.30\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}\right), 7.00(\mathrm{t}$, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}$-arom.), 7.53 (s, 2H, H-arom.), 7.57 (d, $2 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}$-arom.), $7.74(\mathrm{~d}, 2 \mathrm{H}, J=2.2 \mathrm{~Hz}$, H-arom.), 7.77 (d, $2 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{H}$-arom.), 8.44 (s, $1 \mathrm{H}, O H), 8.60(\mathrm{~s}, 2 \mathrm{H}, O H) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 14.08\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 22.69\left(\mathrm{~s}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 25.73(\mathrm{~s}$, $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 29.37\left(\mathrm{~s},\left(\mathrm{CH}_{2}\right)_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 29.61$ (s, $\left.\left(\mathrm{CH}_{2}\right)_{3}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3}\right), 31.94\left(\mathrm{~s}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{3}\right)$, 79.15 (s, O-CH2), 110.97 (s, C-arom.), 111.80 (s, Carom.), 121.84 (s, C-arom.), 122.43 (s, C-arom.), 122.77 (s, C-arom.), 126.69 (s, C-arom.), 128.05 (s, C-arom.), 139.46 (s, C-arom.), 139.73 (s, C-arom.), 139.99 (s, Carom.), 140.52 (s, C-arom.), 157.22 (s, C-arom.), 157.92 (s, C-arom.), 160.01 (s, C-arom.). Anal. calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{Br}_{3} \mathrm{O}_{4} \mathrm{~S}_{4}, \%$: C, 46.75; H, 3.81; Br, 27.44; S, 14.68. Found, \%: C, 46.90; H, 4.03; Br, 27.83; S, 15.21. MS (FAB) $m / z 876.0\left(\left[\mathrm{M}^{+}\right]\right) ; \mathrm{m} / \mathrm{z} 896.8\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)$.

Synthesis of 5

$\mathrm{SnCl}_{4}(1.64 \mathrm{~g}, 6.29 \mathrm{mmol}, 0.74 \mathrm{ml})$ and methyl chloromethyl ether ($1.01 \mathrm{~g}, 12.58 \mathrm{mmol}, 0.96 \mathrm{ml}$) were added to the solution of $3(0.20 \mathrm{~g}, 0.31 \mathrm{mmol})$ in dry chloroform $(20 \mathrm{ml})$. The reaction mixture was stirred for 24 h at r.t. Distilled water (40 ml) was added to the mixture. Water layer was washed with chloroform $(2 \times 20 \mathrm{ml})$. The combined chloroform layers were washed with water $(1 \times 20 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Obtained colorless oil was dissolved in chloroform (3 ml). Hexane (40 ml) was added and the solid impurity was filtered-off. The solution was evaporated and the procedure was repeated. Obtained residue was dried for 1 h under vacuum $(0.01 \mathrm{mmHg})$ at $100{ }^{\circ} \mathrm{C}$. Compound $5(0.10 \mathrm{~g}, 41 \%)$ was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, 3 \mathrm{H}$, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.16-1.54\left(\mathrm{~m}, 12 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{3}\right)$, $1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{3}\right), 2.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{3}\right), 4.33\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}\right), 4.36(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.47\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.96(\mathrm{t}, 1 \mathrm{H}$, $J=7.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{arom}.), 7.50$ (s, 2H, H-arom.), 7.58 (d, $2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}$-arom.), $7.65(\mathrm{~d}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{H}-$ arom.), 7.68 (d, $2 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{H}$-arom.), 8.81 (s, 1 H ,
$O H), 8.86(\mathrm{~s}, 2 \mathrm{H}, O H) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $14.15\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 22.71\left(\mathrm{~s}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 25.72\left(\mathrm{~s}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{3}\right), 29.39\left(\mathrm{~s}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 29.61\left(\mathrm{~s},\left(\mathrm{CH}_{2}\right)_{2}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{3}\right), 29.69\left(\mathrm{~s},\left(\mathrm{CH}_{2}\right)_{2}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{CH}_{3}\right), 31.93(\mathrm{~s}$, $\left.\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{3}\right), 44.91\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}\right), 45.02\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}\right)$, 79.09 (s, O-CH2), 120.65 (s, C-arom.), 121.15 (s, Carom.), 121.40 (s, C-arom.), 126.40 (s, C-arom.), 128.44 (s, C-arom.), 129.76 (s, C-arom.), 130.49 (s, C-arom.), 138.13 (s, C-arom.), 138.43 (s, C-arom.), 138.89 (s, Carom.), 139.52 (s, C-arom.), 158.07 (s, C-arom.), 158.89 (s, C-arom.), 160.20 (s, C-arom.).

Synthesis of 6

Triethyl phosphite ($0.34 \mathrm{~g}, 2.05 \mathrm{mmol}, 0.35 \mathrm{ml}$) was added to the solution of $5(0.10 \mathrm{~g}, 0.13 \mathrm{mmol})$ in dry chloroform (10 ml). The reaction mixture was stirred for 4 h at r.t. The solvent was evaporated under vacuum $(10 \mathrm{mmHg})$ at r.t. Hexane $(10 \mathrm{ml})$ was added to the residue and the mixture was stirred for 1 h . The hexane layer was poured out. The procedure was repeated twice. The obtained residue was dried for 1 h under vacuum $(0.01 \mathrm{Hgmm})$ at $100^{\circ} \mathrm{C}$. Compound $6(0.10 \mathrm{~g}$, 71%) was obtained as a colorless glassy product. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.13\left(\mathrm{t}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.18-1.54$ $\left(\mathrm{m}, 24 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{3}\right.$ and $\left.\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.62(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{3}\right), 2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{3}\right)$, $2.85\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J=21.7 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}\right), 2.99(\mathrm{~d}, 4 \mathrm{H}$, $\left.{ }^{2} J=21.4 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{P}\right), 3.80-4.17\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{P}\right)$, 4.33 (t, $\left.2 \mathrm{H}, \quad J=7.3 \mathrm{~Hz}, \quad \mathrm{O}-\mathrm{CH}_{2}\right), 6.90(\mathrm{t}, \quad 1 \mathrm{H}$, $J=7.8 \mathrm{~Hz}, \mathrm{H}$-arom.), 7.40 (s, 2H, H-arom.), 7.47-7.66 $\left(\mathrm{m}, 6 \mathrm{H}\right.$, H-arom.), $8.74(\mathrm{~s}, 3 \mathrm{H}, \quad O H) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.04\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 16.28\left(\mathrm{~s}, \mathrm{O}-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{3}\right), 22.59\left(\mathrm{~s}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 25.64\left(\mathrm{~s}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$, $29.24\left(\mathrm{~s}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}\right), 29.32\left(\mathrm{~s}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{3}-\right.$ $\left.\mathrm{CH}_{3}\right), 29.49\left(\mathrm{~s},\left(\mathrm{CH}_{2}\right)_{2}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3}\right), 29.60\left(\mathrm{~s}, \mathrm{CH}_{2}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{3}\right), 31.82\left(\mathrm{~s}, \mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{3}\right), 32.16(\mathrm{~d}$, $\left.{ }^{1} J=141.0 \mathrm{~Hz}, C H_{2}-\mathrm{P}\right), 62.09\left(\mathrm{~d},{ }^{2} J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ $\mathrm{O}-\mathrm{P}), 78.91$ (s, $\mathrm{O}-\mathrm{CH}_{2}$), 120.49 (s, C-arom.), 121.11 (s, C-arom. (two types)), $123.57\left(\mathrm{~d},{ }^{2} J=8.9 \mathrm{~Hz}, C\right.$-arom.-$\mathrm{CH}_{2}-\mathrm{P}$), 124.37 ($\mathrm{d},{ }^{2} J=8.7 \mathrm{~Hz}, \quad$ C-arom. $-\mathrm{CH}_{2}-\mathrm{P}$), 125.96 (s, C-arom.), 128.64 (s, C-arom.), 138.76 (d, ${ }^{3} J=6.2 \mathrm{~Hz}, C$-arom. $-\mathrm{CH}_{2}-\mathrm{P}$), $139.09-139.33$ (m, C arom. (two types)), 139.63 (d, ${ }^{3} J=6.2 \mathrm{~Hz}, C$-arom.-$\mathrm{CH}_{2}-\mathrm{P}$), 156.82 (s, C-arom.), 157.66 (s, C-arom.), 160.14 (s, C-arom.). ${ }^{31} \mathrm{P}$ NMR (121 MHz, CDCl_{3}): $\delta 26.4$.

Results and discussion

The exhaustive alkylation of thiacalixarenes $\mathbf{1 a , b}$ with 20 -fold excess of decyl or dodecyl bromides (Scheme 1) was achieved by reflux in acetone in the presence of the excess of potassium carbonate. The tetralkylated thiacalixarenes 2a-c (1,3-alternate) were obtained as the colorless crystalline products ($25-70 \%$ yield).

In solutions the 1,3-alternate conformation is characterized by the high field resonance of $-\mathrm{CH}_{2}$ protons (δ
$3.81-3.86 \mathrm{ppm})$ in the ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right)$ according to the shielding effect of two neighboring benzene rings [11, 13].

Scheme 1.
Single crystals of $\mathbf{2 a}$ and $\mathbf{2 b}$ were obtained by the crystallization from n-hexane and their structure was
solved by X-ray diffraction. The molecular structures (Figures 1a and 2a) confirm that both molecules, in the solid state, are in the 1,3-alternate conformation. The average $\mathrm{C}-\mathrm{S}$ distances in $\mathbf{2 a}$ and $\mathbf{2 b}$ are $1.77 \AA$ with average $\mathrm{C}-\mathrm{S}-\mathrm{C}$ angles of 108.8° and 107.2°, respectively. In both structures, the geometry of the macrocycles is highly symmetrical, the distances between the para-carbons of the aromatics rings are $7.47 \AA, 7.61 \AA$ for 2 a and $7.18 \AA, 7.38 \AA$ for $\mathbf{2 b}$.

For $\mathbf{2 a}$, with regard to the aliphatic chains, they are symmetrically elongated with all dihedral angles in the range of $172.0-180.0^{\circ}$. In the case of $\mathbf{2 b}$, the chains show lower symmetry: only one chain is elongated (dihedral angles $169.0-180.0^{\circ}$). The packing of $\mathbf{2 a}$ and $\mathbf{2 b}$ are shown in Figures 1 b and 2 b , respectively. The structures are stabilized exclusively

Figure 1. (a) Molecular structure of tetradecyloxythiacalix[4]arene 2a; (b) View of the packing of 2a.

Figure 2. (a) Molecular structure of tetra-tert-butyl-tetradecyloxythiacalix[4]arene 2b; (b) View of the packing of $\mathbf{2 b}$.

Table 1. Products distribution for the decylaltion of thiacalix[4] arene $\mathbf{1 a}\left(\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{Br}, \mathrm{K}_{2} \mathrm{CO}_{3}\right.$, acetone $)$

No.	$n-\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{Br}$ Ratio ($\mathrm{mol} / \mathrm{mol} 1 \mathbf{1 a}$)		Volume of the solvent (acetone), (ml/g 1a)	Time (h)	Products distribution (\%) ${ }^{\text {a }}$			
			Mono-3		Tetra-2a	Parent-1a		
1	20	20		40	40	45	$55\left(25^{\text {b }}\right.$)	0
2	20	0.5	40	50	0	0	100	
3	20	20	40	5	10	0	90	
4	2	1	60	50	60	0	40	
5	2	1	60	100	85	0	15	
6	3	1.5	60	100	90	10	0	
7	4	1.5	60	100	$95\left(60^{\text {b }}\right.$)	5	0	

${ }^{\text {a }}$ Determined by the ${ }^{1} \mathrm{H}$ NMR method.
${ }^{\mathrm{b}}$ Yield of the isolated product.
by Van der Waals forces (all intermolecular distances are above $4.30 \AA$).

The alkylation process with the long chained alkyl bromides is slower in comparison to the alkylation by the lower $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ alkyl bromides [6, 10-14]. This regularity was successfully used for the selective lower rim decylation of thiacalix[4]arene.

Varying of the reaction conditions (Table 1), resulted in obtaining of monodecyloxythiacalix[4]arene $\mathbf{3}$ in satisfactory yield (60%) as a colorless crystalline product (Scheme 2).

Scheme 2.

Monodecyloxythiacalix[4]arene 3, due to the circular system of the intramolecular hydrogen bonds $\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}$ at the lower rim, keeps the initial cone conformation [4].

The ${ }^{1} \mathrm{H}$ NMR spectra of compound 3 (cone conformer) have signals of the characteristic protons of the $-\mathrm{CH}_{2}$ fragments in the rather low field ($\delta 4.33 \mathrm{ppm}$) in comparison with the 1,3-alternate conformer 2a (δ $3.86 \mathrm{ppm})$. The same low field shifts are observed for some further methylen fragments of the decyloxy group (see experimental), which is completely correlated with
the theory of the shielding and deshielding effects [11, 13]. Finally the cone conformation of $\mathbf{3}$ was confirmed by X-ray crystallography (Figure 3a, b).

Suitable crystals for X-ray diffraction of $\mathbf{3}$ were grown from n-hexane. In contrast to $\mathbf{2 a}$ and $\mathbf{2 b}, \mathbf{3}$ is presented in the cone conformation. Hydrogen bonds between the phenolic units (distances between oxygen atoms are: $2.82 \AA, 2.86 \AA, 2.89 \AA$ and $2.93 \AA$) reinforce the flattened cone conformation with angles between the opposite aromatic rings of 113.4° and 31.0° and para-carbon-para-carbon distances of $10.23 \AA$ and $6.88 \AA$. The single alkyl chain is bent back across the lower rim of the macrocycle.

The packing represented in Figure 3b, shows that the structural motif is an interdigitated dimer with an interdigitation angle of 167.3°. This is close to the angle of 158.8° seen in the ubiquitous dimeric structural motif of calix[4]arene bis-dihydroxyphosphonic acid [15]. The macrocyclic dimers are arranged in layers, (interlayer distance $12.20 \AA$) separated by the folded alkyl chains.

The cone conformation of $\mathbf{3}$ gives a possibility to design amphiphilic derivatives by functionalyzation of the upper rim with hydrophilic groups. The reactive bromide or chloromethyl groups were introduced for this aim [16].

The regioselective bromination of trihydroxy-monodecyloxythiacalix[4]arene 3 at the para-position of the non-alkylated phenolic rings with NBS in the acetone solution (Scheme 3) gives trihydroxy-monodecyloxytribromothiacalix[4]arene 4 in 90% yield as a colorless crystalline substance.

Figure 3. (a) Molecular structure of monodecyloxythiacalix[4]arene 3; (b) View of the packing of 3.

Three chloromethyl groups were selectively introduced into the same para-positions by the reaction of 3 with an excess of methyl chloromethyl ether and tin tetrachloride in the chloroform solution (Scheme 3). Trihydroxy-monodecyloxy-trichloromethylthiacalix[4]arene 5 was obtained in 41% yield as a colorless oil.

These functionalities allow further modification of the macrocycle upper rim by the bromine (catalytic) or chlorine replacement with different nucleophilic groups [17-20]. For example, the Arbuzov reaction of chloromethylthiacalix[4]arene 5 with triethyl phosphite in the chloroform solution leads to chlorine atoms substitution with the hydrophilic diethoxyphosphoryl groups. The amphiphilic triphosphorylated derivative was obtained in a good yield (71%) as a colorless glassy product (Scheme 4).

5

6

Scheme 4.

The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4} \mathbf{6}$ confirms the cone conformation. The signals of the decyloxy group are situated in rather low field: $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}(\delta 1.60-$ $1.64 \mathrm{ppm}) ; \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}(\delta 2.13-2.16 \mathrm{ppm}) ; \mathrm{O}-\mathrm{CH}_{2}(\delta$ $4.30-4.33 \mathrm{ppm})$.

Conclusion

In conclusion, we have described the first efficient methods of the synthesis of the cone shaped monodecyloxythiacalix[4]arene $\mathbf{3}$ and its upper rim tribromoand trichloromethyl-derivatives $\mathbf{4}$ and $\mathbf{5}$. It was shown that monodecyloxy-trichloromethylthiacalix[4]arene $\mathbf{5}$ is convenient starting material for the synthesis of the amphiphilic thiacalix[4]arene derivatives. The preparation of tetrakis-decyl(dodecyl)oxythiacalix[4]arenes 2a-c in 1,3-alternate conformation is also presented.

Acknowledgements

The authors of the Kyiv team thank the Science and Technology Center in Ukraine for support of the work through Grant RUS-09.

References

1. Z. Asfari, V. Böhmer, J. Harowfield, and J. Vicens, (eds.): Calixarenes 2001, Kluwer Academic Publishers, Dodrecht (2001).
2. H. Kumagai, M. Hasegawa, S. Miyanari, Yo. Sugawa, Yo. Sato, T. Hori, S. Ueda, H. Kamiyama, and S. Miyano: Tetrahedron Lett. 38, 3971 (1997).
3. T. Sone, Yo. Ohba, K. Moriya, H. Kumada, and K. Ito: Tetrahedron 53, 10689 (1997).
4. H. Akdas, L. Bringel, Er. Graf, M.W. Hosseini, G. Mislin, J. Pansanel, A. De Cian, and J. Fischer: Tetrahedron Lett. 39, 2311 (1998).
5. I.S. Antipin, I.I. Stoikov, A.T. Gubaidullin, I.A. Litvinov, D. Weber, W.D. Habicher, and A.I. Konovalov: Tetrahedron Lett. 40, 8461 (1999).
6. P. Lhotak, M. Himl, S. Pakhomova, and I. Stibor: Tetrahedron Lett. 39, 8915 (1998).
7. N. Iki, H. Kumagai, N. Morohashi, K. Ejima, M. Hasegawa, S. Miyanari, and S. Miyano: Tetrahedron Lett. 39, 7559 (1998).
8. G. Mislin, Er. Graf, M.W. Hosseini, A. De Cian, and J. Fischer: Chem. Comтип. 1345 (1998).
9. G. Mislin, Er. Graf, M.W. Hosseini, A. De Cian, and J. Fischer: Tetrahedron Lett. 40, 1129 (1999).
10. P. Lhotak, M. Himl, I. Stibor, J. Sykora, and I. Cisarova: Tetrahedron Lett. 42, 7107 (2001).
11. N. Iki, F. Narumi, T. Fujimoto, N. Morohashi, and S. Miyano: J. Chem. Soc., Perkin Trans. 2, 2745 (1998).
12. H. Akdas, G. Mislin, E. Graf, M.W. Hosseini, A. De Cian, and J. Fischer: Tetrahedron Lett. 40, 2113 (1999).
13. J. Lang, H. Dvořakova, I. Bartošova, P. Lhotak, I. Stibor, and R. Hrabal: Tetrahedron Lett. 40, 373 (1999).
14. V. Boyko, A. Podoprigorina, A. Yakovenko, V. Pirozhenko, and V. Kalchenko: J. Inclusion Phenom. Macrocyclic Chem. 50, 193 (2004).
15. J. Lipkowski, Y. Simonov, V.I. Kalchenko, M.A. Visotsky, and L.N. Markovsky: Anales de Quimica Int. Ed. 94, 328 (1998).
16. O. Kasyan, D. Swierczynski, A. Drapailo, K. Suwinska, J. Lipkowski, and V. Kalchenko: Tetrahedron Lett. 44, 7167 (2003).
17. V. Kalchenko, L. Atamas, V. Pirozhenko, and L. Markovsky: Zh. Obshch. Khim. 62, 2623 (1992); Chem. Abstr. 119, 72704f (1993).
18. M. Almi, A. Arduini, A. Casnati, A. Pochini, and R. Ungaro: Tetrahedron 45, 2177 (1989).
19. T. Arimura, T. Nagasaki, S. Shinkai, and T. Matsuda: J. Org. Chem. 54, 3766 (1989).
20. Y. Lian-Min, Z. Yan-Song, and H. Zhi-Tang: Synth. Commun. 29, 4451 (1999).

[^0]: * Author for Correspondence. E-mail: vik@bpci.kiev.ua

